

Graduate Program of Teaching and History of Earth Sciences

Geosciences Institute

VIII GeoSciEd 2018 – 8th Quadrennial Conference of the International Geoscience Education Organisation (IGEO) – Geosciences for Everyone – VIII Simpósio Nacional de Ensino e História de Ciências da Terra / EnsinoGEO-2018

– Geociências para Todos – Campinas – Sao Paulo – Brazil, July 2018

A computer animation on Phanerozoic movements and paleogeography of the Australian Plate Celso Dal Ré Carneiro João Cláudio Toniolo

2010

University of Campinas

Questions

- How to relate past positions of continents to global and regional environmental changes?
- How to describe and to understand the wandering of continents during Phanerozoic?

Interpreting the path of Australian plate from Cambrian to Recent...

- Computer animation designed to overcome preconceptions and common-sense ideas on climate change
 - Focus on Phanerozoic geological drift of a selected plate
- Series of maps integrated in flash software and converted to animated graphics interchange format (GIF)

Movements of Australia

- Paleogeography and dynamics of a moving plate
 - Events of subsidence or uplift
- Paleoclimatic studies
 - At a given period there is a huge variety of climates for each single position

VIII GeoSciEd 2018 – 8th Quadrennial Conference of the International Geoscience Education Organisation (IGEO) – Geosciences for Everyone – VIII Simpósio Nacional de Ensino e História de Ciências da Terra / EnsinoGEO-2018

III Simpósio Nacional de Ensino e História de Ciências da Terra / EnsinoGEO-20 – Geociências para Todos – Campinas – Sao Paulo – Brazil, July 2018

Changes of latitudinal position help to explain many geological points

- Paleoenvironmental evidence from:
 - Sandstones, shales, limestones and diamictites
- Paleogeography can be crossed with data on:
 - Biological distribution and diversity
 - Volcanism
 - Hot spots
 - Mountain ranges
 - Sedimentary basins

Legend for paleogeographic maps

Source:

White M. 1999. *Reading the rocks*: animals and plants in prehistoric Australia and New Zealand. 2 ed. Singapore: Kangaroo Press. 256p.

460 Ma

400-380 Ma

300-280 Ma

170-140 Ma

60 Ma

The maps result from a collective, not isolated, effort

- Maps produced by a broad group of:
 - Geologists, geophysicists and other professionals
 - Associated to oil and mineral exploration companies and Australia governmental agencies

Animation <u>MovimentoAustralia.swf</u>

	Fanerozóico									
	Paleozóico					Mesozóico			Cenozóico	
Cambriano	Ordoviciano	Silur.	Devoniano	Carbonífero	Permiano	Triássico	Jurássico	Cretáceo		
48	38,3 44	3,7 41	5,0 359,	2 299,0	0 251,	0 199,6	145,5	65,5		
±	1,7 ±1	,5 ± 2	,8 ± 2,5	± 0,8	± 0,4	± 0,6	± 4,0	± 0,3		
	48	488,3 44	ambriano Ordoviciano Silur. 488,3 443,7 416	ambriano Ordoviciano Silur. Devoniano 488,3 443,7 416,0 359,	mbriano Ordoviciano Silur. Devoniano Carbonífero 488,3 443,7 416,0 359,2 299,	Paleozóico ambriano Ordoviciano Silur. Devoniano Carbonífero Permiano 488,3 443,7 416,0 359,2 299,0 251,0	Paleozóico a mbriano Ordoviciano Silur. Devoniano Carbonífero Permiano Triássico 488,3 443,7 416,0 359,2 299,0 251,0 199,6	Paleozóico Mesozóico ambriano Ordoviciano Silur. Devoniano Carbonífero Permiano Triássico Jurássico 488,3 443,7 416,0 359,2 299,0 251,0 199,6 145,5	Paleozóico Mesozóico ambriano Ordoviciano Silur. Devoniano Carbonifero Permiano Triássico Jurássico Cretáceo 488,3 443,7 416,0 359,2 299,0 251,0 199,6 145,5 65,5	

Control of present-day world climates

- Debate should focus on the interactions between spheres
- The animation helps developing and exploring concepts of climate change, as long as it requires:
 - a) An understanding of paleo-environments
 - b) Historical and epistemological aspects of modern studies on Planet Earth dynamics

Conclusions

- The maps are an example of the need of collaborative work by research groups, a definitive characteristic of modern Earth Sciences
- The "Australian dance" animation may bring students a motivating tool

References

Gonçalves P.W., Carneiro C.D.R. 2008. La danza de los continentes en el tiempo geológico. *Rev. de la Enseñanza de las Ciencias de la Tierra*, **16**(1):107-116.

White M. 1999. *Reading the rocks*: animals and plants in prehistoric Australia and New Zealand. 2 ed. Singapore: Kangaroo Press. 256p.

VIII GeoSciEd 2018 – 8th Quadrennial Conference of the International Geoscience Education Organisation (IGEO) – Geosciences for Everyone –

VIII Simpósio Nacional de Ensino e História de Ciências da Terra / EnsinoGEO-2018 – Geociências para Todos – Campinas – Sao Paulo – Brazil, July 2018

Ensino GEO

-2018

Thank you for your attention!