Dave Walker Lamont-Doherty Earth Observatory, Columbia U. What are some big issues in geochemistry?

Mantle – Crust

transfer!

Mantle to Core transfer!

← Crust

Liquid metal

quid metal Rocky Core Mantle

12 February 2005, Earth2Class@LDEO

"The core is leaking! The core is leaking!"

What would be an appropriate response?

- Run and find Chicken Little?
- Write NSF or DOE for a grant?
- Call the *National Enquirer*?

Is the core really leaking?

¹⁸⁷**Re** - ¹⁸⁷**Os** \rightarrow ^{187/188}**Os** γ_{Os}

¹⁹⁰Pt - ¹⁸⁶Os \rightarrow ^{186/188}Os ϵ_{Os}

for γ_{Os} - ε_{Os} correlation need $D_{Os} > D_{Re} >> D_{Pt}$ $D_{Os/Re} \sim 1.2-1.4$ $D_{Os/Pt} \sim 3-10$ Inner core crystallization would do this!

Some plume basalts do show correlated Os anomalies.

Yes, perhaps: Os isotopes Hawaiian plume Fe/Mn No: W isotopes & radiogenic Sr/Os correlation

But what is the solubility of oxygen in liquid Fe?

And how could it be measured at a megabar?

Non-divergent synchrotron X-rays for imaging.

http://xraysweb.lbl.gov/bl1222/home.htm

Experiments at ALS/LBL With Mike Walter*, Simon Clark, Martin Kunz, and many others

LBL ALS Station 12.2.2

X-ray density for chemical analysis!

In situ DAC X-Radiographic Imaging (XRI)

50 kilobars

Melting shows erosion

550 kilobars

No erosion on melting!

Oxygen solubility does not appear to be high enough to be interesting.

Lumpy D"
probably not
exsolved,
floating slag
on molten Fe
of the outer
core

Are there other solutions to the problem?

What does the presence of life do for us?

D" includes CMB magma chambers

1. 1. 11

Oxidative titration of core→mantle

Contaminated plume source Core signal generated by recycled oxidized crust.

Remaining questions:

Is the core really leaking? What are crustal digestion processes at the CMB? Does the biosphere corrode the core?

Activities/questions

- Would you expect gravitational acceleration to vary as you go from crust to core?
- It doesn't vary much. Why not?
- What is average density of the mantle if pressure at the CMB is 1.3 megabar?
- How much force must a DAC use to hit a megabar?
- Give an example of exsolution with a pressure change or with a temperature change. [See E2C from October 2002.]
- Give an example of a precipitation or titration reaction.

Do the melting relations work?

FIGURE 1. Assumed phase relations in the vicinity of the coremantle boundary (CMB) projected from Mg. The mantle assemblage

```
Morse (2000)
```

Guess what, we have no idea!

Two *in situ* properties needed to characterize ternary liquid composition.

