Chemistry Name

Concentration of Solutions

Introduction

Anything that dissolves in water creates a **solution**. But solutions often behave quite differently depending on how much **solute** is dissolves in water, which is the **solvent**. Solutions which have a lot of solute are said to be **concentrated** or **strong solutions**. Solutions which have relatively little solute in them are said to be **dilute** or **weak solutions**.

One way to describe the concentration of a solution **quantitatively** is by its **percent concentration**. If a substance is **pure** (has nothing else in it), it is said to be **100%**. This call also be written as **1.00**. A solution that is half substance and half water is said to be a 50% solution (0.50).

A 10% solution (0.10) would be in a **ratio** of 1 drop of solution: 9 drops of water. As solutions become more dilute, we often write them in **scientific notation**. So $10\% = 0.10 = 1 \times 10^{-1}$. A 1% solution would have 1 drop of solution: 99 drops of water, and be described as $1\% = 0.01 = 1 \times 10^{-2}$.

Some chemicals—especially dangerous **toxins (poisons)**—can be harmful to people in very dilute concentrations. These can be as small as 1 **part per million (ppm)**. One way to understand what this means is to image 1 red ping pong ball in a railroad freight car of white ping pong balls. Environmental chemists sometimes have to measure concentrations in **parts per billion (ppb)** for some of the nastiest pollutants in air, water, soil, and foods.

Activity

To learn more about concentration, obtain the following materials:

- 12-cavity plastic plate
- Medicine dropper
- Food coloring
- Water
- Piece of white paper
- 1. Put the 12-cavity plate on the white paper.
- 2. Put 10 drops of the food coloring into cavity #1. This is the "pure" substance. You will use this for comparisons.

MAKE NOTES ABOUT EACH SOLUTION ON THE OTHER SIDE OF THIS PAGE.

- 3. Put 5 drops of food coloring and 5 drops of water in cavity #2. This is a 50% solution.
- 4. Put 1 drop of the food coloring in cavity #3. This is a 10% solution.
- 5. Take 1 drop from cavity #3 and put it in cavity #4. Add <u>9 drops</u> of water. This is a 1% solution.
- 6. Take 1 drop from cavity #4 and put it in cavity #5. Add <u>9 drops</u> of water. This is a 0.1% solution.
- 7. Take 1 drop from cavity #5 and put it in cavity #6. Add <u>9 drops</u> of water. This is a 0.01% solution.

- 8. Take 1 drop from cavity #6 and put it in cavity #7. Add $\underline{9}$ drops of water. This is a 0.001% solution.
- 9. Take 1 drop from cavity #7 and put it in cavity #8. Add <u>9 drops</u> of water. This is a 0.0001% solution.
- 10. Take 1 drop from cavity #8 and put it in cavity #9. Add $\underline{9}$ drops of water. This is a 0.00001% solution.

Notes:

Concentration (%)	Decimal form	Sci. notation	Comments
"Pure" (100%)	1.00	1 x 10 ⁰	
50%	0.50	5 x 10 ⁻¹	
10%	0.10	1 x 10 ⁻¹	
1%		1 x 10 ⁻²	
0.1%			
0.01%			
0.001%			
0.0001%			
0.00001%			

Questions

1.	What is the "solvent"?		
	What is the "solute"?		
	Is this a heterogeneous or homogeneous solution?		
2.	Do you think the pattern would be different if you started with 20 drops, instead of 10? Explain.		
3.	How does the color of the 100% solution compare with the color of the 50% pure solution?		
4.	How does the color of the 100% solution compare with the color of the 10% pure solution?		
5.	How does the color of the 100% solution compare with the color of the 1% pure solution?		
6.	How does the color of the 10% solution compare with the color of the 1% pure solution?		
7.	At what concentration does the solution seem to become completely clear?		
Other	questions:		
1.	What does it mean when we say we are buying "whole milk"? a "1% fat milk"?		
2.	What is the average concentration of dissolved salts in ocean water?		
3.	What is the average concentration of carbon dioxide in air?		