Minerals - Natural - Solid - Inorganic - Definite chemical composition - Crystal structure due to internal arrangement of atoms http://www.minerals.net/gemstone/index.htm 3.7 million pounds of minerals, metals, and fuels in his/her lifetime © 2001 Mineral Information Institute Golden, Colorado http://www.mii.org/www.mii.org #### General Facts about Minerals - More 3,000 have been identified - A few are "native elements" -- made of only one element, such as sulfur, gold. copper, and graphite (carbon) - Most are compounds, especially the silicate group (Si, O). - Other important groups are oxides, carbonates, and sulfides. ## Less than a dozen commonly form most of the rocks - Quartz - Feldspar (group) - Muscovite (white mica) - Biotite (black mica) - Calcite - Pyroxene - Olivine - Amphibole (group) - Magnetite, limonite, and other iron oxides - Pyrite #### Common uses include: - Aluminum--packaging, transport, building - Beryllium--gemstones, fluorescent lights - Copper--electric cables, wires, switches - Feldspar--glass and ceramics - Iron--buildings, automobiles, magnets - Calcite--toothpaste, construction - http://www.mii.org/commonminerals.php # Minerals are identified by their key characteristics - hardness - crystal shape (form) - luster - color - streak - cleavage/fracture - density (specific gravity) - special properties - --reaction to acid - --fluorescence - --salty taste - --magnetism #### Mineral Hardness - Ability to scratch another mineral - Mohs scale from 1 (talc) to 10 (diamond) - Quartz (most common mineral and most dust particles) is 7 http://mineral.galleries.com/minerals/elements/diamond/diamond.htm ## Crystal Shape (Form) - External structure due to internal arrangement of the atoms - Six basic groups of shapes, with about three dozen variations http://www.minerals.net/mineral/carbonat/aragonit/aragoni1.htm #### Luster - Describes how light reflects off the surface - Main categories are "metallic" and "nonmetallic" - Non-metallic includes "dull," glassy," waxy," "pearly," and othershttp://www.min erals.net/mineral/sulfid es/pyrite/pyrite2.htm http://www.minerals.net/mineral/sulfides/pyrite/pyrite2.htm #### Color - results from ability to absorb some wavelengths and reflect others - some minerals have characteristics colors - others vary due to chemical differences or impurities (atoms mixed inside the main elements) http://www.minerals.net/mineral/carbonat/calcite/images/4assortd.htm #### Streak - Color of the powder when rubbed on a "streak plate" (unglazed porcelain) - May be same as handspecimen or different - Some paint is based on powdered minerals (streaks). http://www.minerals.net/mineral/oxides/hematite/hematit6.htm ### Mineral cleavage/fracture - Some minerals split along flat surfaces when struck hard--this is called mineral cleavage - Other minerals break unevenly along rough or curved surfaces--this is called fracture - A few minerals show both cleavage and fracture ## Density (Specific Gravity) - All minerals have density (mass / volume), but some are very dense - Examples include galena, magnetite, and gold - Specific Gravity means the density of the mineral compared with the density of water http://www.minerals.net/mineral/elements/gold/gold1.htm ## Special Characteristics-the "Acid Test" ### Special Characteristics--Fluorescence - Some minerals will glow when placed under short-wave or long-wave ultraviolet rays - Franklin and Ogdensburg NJ are famous for their fluorescent minerals http://www.sterlinghill.org/Tour%20information.htm # Special Characteristics-Salty Taste - DO NOT TASTE MOST MINERALS! - Halite is the exception--it will taste salty http://mineral.galleries.com/scripts/item.exe?LIST+Minerals+Halides+Halite ## Special Characteristics--Magnetism - Many iron minerals will produce an invisible magnetic force field - "Lodestone" was used by Vikings more than 1,000 years ago as compasses http://www.minerals.net/mineral/oxides/magnetit/magneti4.htm Resources × \ Mage earth2class.org/site/wp-cc × / \ www.p12.nysed.gov/asses × \ www.p12.nysed.gov/assessment/reftable/earthscience-rt/esrt2011-engr.pdf | | | 띯 | 띪 | | roperaes | or comm | ion willierars | | | |-------------------|----------------------------|--------|--------------------------------------|---|---|---------------------------------------|---|---|--| | LUSTER | HARD-
NESS | | | DISTINGUISHING CHARACTERISTICS | | USE(S) | COMPOSITION* | MINERAL NAME | | | Metallic fuster | 1-2 | ~ | silver to
gray | | black streak,
greasy feel | | pencil lead,
lubricants | С | Graphite | | | 2.5 | • | | metallic
silver | gray-black streak, cubic cleavage,
density = 7.6 g/cm ³ | | ore of lead,
batteries | PbS | Galena | | | 5.5-6.5 | | ~ | black to
silver | black streak,
magnetic | | ore of iron,
steel | Fe ₃ O ₄ | Magnetite | | | 6.5 | | ~ | brassy
yellow | green-black streak,
(fool's gold) | | ore of
sulfur | FeS ₂ | Pyrite | | Either | 5.5 = 6.5
or 1 | | | n streak | ore of iron,
jewelry | Fe ₂ O ₃ | Hematite | | | | | 1 | ~ | | white to green | greasy feel | | ceramics,
paper | Mg ₃ Si ₄ O ₁₀ (OH) ₂ | Talc | | | 2 | | ~ | yellow to
amber | white-yellow streak | | sulfuric acid | S | Sulfur | | Normetall cluster | 2 | ~ | | white to
pink or gray | easily scratched
by fingernail | | plaster of paris,
drywall | CaSO ₄ -2H ₂ O | Selenite gypsum | | | 2-2.5 | ~ | | colorless to
yellow | flexible in thin sheets | | paint, roofing | KAI ₃ Si ₃ O ₁₀ (OH) ₂ | Muscovite mica | | | 2.5 | ~ | | colorless to
white | cubic cleavage,
salty taste | | food additive,
melts ice | NaCl | Halite | | | 2.5-3 | ~ | | black to
dark brown | flexible in thin sheets | | construction
materials | K(Mg,Fe) ₃
AlSi ₃ O ₁₀ (OH) ₂ | Biotite mica | | | 3 | ~ | | colorless
or variable | bubbles with acid,
rhombohedral cleavage | | cement,
lime | CaCO ₃ | Calcite | | | 3.5 | • | | colorless
or variable | bubbles with acid
when powdered | | building
stones | CaMg(CO ₃) ₂ | Dolomite | | | 4 | • | | colorless or
variable | cleaves in
4 directions | | hydrofluoric
acid | CaF ₂ | Fluorite | | | 5=6 | • | black to
dark green | | cleaves in
2 directions at 90* | | mineral collections,
jewelry | (Ca,Na) (Mg,Fe,Al)
(Si,Al) ₂ O ₆ | Pyroxene
(commonly augite) | | | 5.5 | • | black to
dark green | | cleaves at
56° and 124° | | mineral collections,
jewelry | CaNa(Mg,Fe) ₄ (Al,Fe,Ti) ₃
Si ₆ O ₂₂ (O,OH) ₂ | Amphibole (commonly homblende) | | | 6 | • | | white to pink | cleave
2 direction | | ceramics,
glass | KAISi ₃ O ₈ | Potassium feldspar
(commonly orthodase) | | | 6 | ~ | | white to gray | | | ceramics,
glass | (Na,Ca)AlSi ₃ O ₈ | Plagioclase feldspar | | | 6.5 green to gray or brown | | commonly light green
and granular | | fumace bricks,
jewelry | (Fe,Mg) ₂ SiO ₄ | Olivine | | | | | 7 / | | ~ | colorless or
variable | glassy luster, may form
hexagonal crystals | | glass, jewelry,
electronics | SiO ₂ | Quartz | | | 6.5-7.5 dark red to green | | | often seen as red glassy grains
in NYS metamorphic rocks | | jewelry (NYS gem),
abrasives | Fe ₃ Al ₂ Si ₃ O ₁₂ | Garnet | | | | *Chemical | symbol | s: | Al = aluminum | CI = chlorine | H = hydroger | n Na = sodiu | m S = sulfur | | C = carbon Ca = calcium F = fluorine Fe = iron K = potassium O = oxygen Si = silicon Ti = titanium Mg = magnesium Pb = lead = dominant form of breakage #### **Useful Web Sites** - http://www.mineralseducationcoalition.org/ - www.galleries.com/Minerals - State Mineral information: http://minerals.usgs.gov/minerals/pubs/state/ Other USGS educational resources: http://education.usgs.gov/secondary.html